X
تبلیغات
اسرار طبیعت

بمب هسته اي چگونه كار مي‌كند؟

شما احتمالاً در كتابهاي تاريخ خوانده‌ايد كه بمب هسته‌اي در جنگ جهاني دوم توسط آمريكا عليه ژاپن بكار رفت و ممكن است فيلم‌هايي را ديده باشيد كه در آنها بمب‌هاي هسته‌اي منفجر مي‌شوند. درحاليكه در اخبار مي‌شنويد، برخي كشورها راجع به خلع سلاح اتمي با يكديگر گفتگو مي‌كنند، كشورهايي مثل هند و پاكستان سلاح‌هاي اتمي خود را توسعه مي‌دهند.

ما ديده‌ايم كه اين وسايل چه نيروي مخرب خارق‌العاده‌اي دارند، ولي آنها واقعاً چگونه كار مي‌كنند؟ در اين بخش خواهيد آموخت كه بمب هسته‌اي چگونه توليد مي‌شود و پس از يك انفجار هسته‌اي چه اتفاقي مي‌افتد؟

فيزيك هسته‌اي

انرژي هسته‌اي به 2 روش توليد مي‌شود:

1- شكافت هسته‌اي: در اين روش هسته يك اتم توسط يك نوترون به دو بخش كوچكتر تقسيم مي‌شود. در اين روش غالباً از عنصر اورانيوم استفاده مي‌شود.

2- گداخت هسته‌اي: در اين روش كه در سطح خورشيد هم اجرا مي‌شود، معمولاً هيدروژن‌ها با برخورد به يكديگر تبديل به هليوم مي‌شوند و در اين تبديل، انرژي بسيار زيادي بصورت نور و گرما توليد مي‌شود.

در شكل زير نمونه اي از شكافت هسته اتم اورانيوم نمايش داده شده است:

و در شكل زير گداخت هسته‌اي اتم‌هاي هيدروژن و تبديل آنها به هليوم 3 و الكترون آزاد نمايش داده شده است:

طراحي بمب‌هاي هسته‌اي:

براي توليد بمب هسته‌اي، به يك سوخت شكافت‌پذير يا گداخت‌پذير، يك وسيله راه‌انداز و روشي كه اجازه دهد تا قبل از اينكه بمب خاموش شود، كل سوخت شكافته يا گداخته شود نياز است.

بمب‌هاي اوليه با روش شكافت هسته‌اي و بمب‌هاي قويتر بعدي با روش گداخت هسته‌اي توليد شدند. ما در اين بخش دو نمونه از بمب هاي ساخته شده را بررسي مي كنيم:

بمب‌ شكافت هسته‌اي :

1- بمب‌ هسته‌اي (پسر كوچك) كه روي شهر هيروشيما و در سال 1945 منفجر شد.

2- بمب هسته‌اي (مرد چاق) كه روي شهر ناكازاكي و در سال 1945 منفجر شد.

بمب گداخت هسته‌اي : 1- بمب گداخت هسته‌اي كه در ايسلند بصورت آزمايشي در سال 1952 منفجر شد.

بمب‌هاي شكافت هسته‌اي:

بمب‌هاي شكافت هسته‌اي از يك عنصر شبيه اورانيوم 235 براي انفجار هسته‌اي استفاده مي‌كنند. اين عنصر از معدود عناصري است كه جهت ايجاد انرژي بمب هسته‌اي استفاده مي‌شود. اين عنصر خاصيت جالبي دارد: هرگاه يك نوترون آزاد با هسته اين عنصر برخورد كند ، هسته به سرعت نوترون را جذب مي‌كند و اتم به سرعت متلاشي مي‌شود. نوترون‌هاي آزاد شده از متلاشي شدن اتم ، هسته‌هاي ديگر را متلاشي مي‌كنند.

زمان برخورد و متلاشي شدن اين هسته‌ها بسيار كوتاه است (كمتر از ميلياردم ثانيه ! ) هنگامي كه يك هسته متلاشي مي‌شود، مقدار زيادي گرما و تشعشع گاما آزاد مي‌كند.

مقدار انرژي موجود در يك پوند اورانيوم معادل يك ميليون گالن بنزين است!

در طراحي بمب‌هاي شكافت هسته‌اي، اغلب از دو شيوه استفاده مي‌شود:

روش رها كردن گلوله:


در اين روش يك گلوله حاوي اورانيوم 235 بالاي يك گوي حاوي اورانيوم (حول دستگاه مولد نوترون) قرار دارد.

هنگامي كه اين بمب به زمين اصابت مي‌كند، رويدادهاي زير اتفاق مي‌افتد:

1- مواد منفجره پشت گلوله منفجر مي‌شوند و گلوله به پائين مي‌افتد.

2- گلوله به كره برخورد مي‌كند و واكنش شكافت هسته‌اي رخ مي‌دهد.

3- بمب منفجر مي‌شود.

در بمب هيروشيما از اين روش استفاده شده بود. نحوه انفجار اين بمب در شكل زير نمايش داده شده است:

روش انفجار از داخل:

در اين روش كه انفجار در داخل گوي صورت مي‌گيرد، پلونيم 239 قابل انفجار توسط يك گوي حاوي اورانيوم 238 احاطه شده است.

هنگامي كه مواد منفجره داخلي آتش گرفت رويدادهاي زير اتفاق مي‌افتد:

1- مواد منفجره روشن مي‌شوند و يك موج ضربه‌اي ايجاد مي‌كنند.

2- موج ضربه‌اي، پلوتونيم را به داخل كره مي‌فرستد.

3- هسته مركزي منفجر مي‌شود و واكنش شكافت هسته‌اي رخ مي‌دهد.

4- بمب منفجر مي‌شود.

بمبي كه در ناكازاكي منفجر شد، از اين شيوه استفاده كرده بود. نحوه انفجار اين بمب، در شكل زير نمايش داده شده است.

بمب‌ گداخت هسته‌اي: بمب‌هاي شكافت هسته‌اي، چندان قوي نبودند!

بمب‌هاي گداخت هسته‌اي ، بمب هاي حرارتي هم ناميده مي‌شوند و در ضمن بازدهي و قدرت تخريب بيشتري هم دارند. دوتريوم و تريتيوم كه سوخت اين نوع بمب به شمار مي‌روند، هردو به شكل گاز هستند و بنابراين امكان ذخيره‌سازي آنها مشكل است. اين عناصر بايد در دماي بالا، تحت فشار زياد قرار گيرند تا عمل همجوشي هسته‌اي در آنها صورت بگيرد. در اين شيوه ايجاد يك انفجار شكافت هسته‌اي در داخل، حرارت و فشار زيادي توليد مي‌كند و انفجار گداخت هسته‌اي شكل مي‌گيرد.در طراحي بمبي كه در ايسلند بصورت آزمايشي منفجر شد، از اين شيوه استفاده شده بود. در شكل زير نحوه انفجار نمايش داده شده است.

اثر بمب‌هاي هسته‌اي:

انفجار يك بمب هسته‌اي روي يك شهر پرجمعيت خسارات وسيعي به بار مي آورد . درجه خسارت به فاصله از مركز انفجار بمب كه كانون انفجار ناميده مي‌شود بستگي دارد.

زيانهاي ناشي از انفجار بمب هسته‌اي عبارتند از :

- موج شديد گرما كه همه چيز را مي‌سوزاند.

- فشار موج ضربه‌اي كه ساختمان‌ها و تاسيسات را كاملاً تخريب مي‌كند.

- تشعشعات راديواكتيويته كه باعث سرطان مي‌شود.

- بارش راديواكتيو (ابري از ذرات راديواكتيو كه بصورت غبار و توده سنگ‌هاي متراكم به زمين برمي‌گردد)

دركانون زلزله، همه‌چيز تحت دماي 300 ميليون درجه سانتي‌گراد تبخير مي‌شود! در خارج از كانون زلزله، اغلب تلفات به خاطر سوزش ايجادشده توسط گرماست و بخاطر فشار حاصل از موج انفجار ساختمانها و تاسيسات خراب مي‌شوند. در بلندمدت، ابرهاي راديواكتيو توسط باد در مناطق دور ريزش مي‌كند و باعث آلوده شدن موجودات، آب و محيط زندگي مي‌‌شود.

دانشمندان با بررسي اثرات مواد راديواكتيو روي بازماندگان بمباران ناكازاكي و هيروشيما دريافتند كه اين مواد باعث: ايجاد تهوع، آب‌مرواريد چشم، ريزش مو و كم‌شدن توليد خون در بدن مي‌شود. در موارد حادتر، مواد راديواكتيو باعث ايجاد سرطان و نازايي هم مي‌شوند. سلاح‌هاي اتمي داراي نيروي مخرب باورنكردني هستند، به همين دليل دولتها سعي دارند تا بر دستيابي صحيح به اين تكنولوژي نظارت داشته باشند تا ديگر اتفاقي بدتر از انفجارهاي ناكازاكي و هيروشيما رخ ندهد.

+ نوشته شده در سه شنبه 14 آذر1391ساعت 2:12 PM توسط کارن |

مقدمه

خزندگان زنده با وجود آنکه فراوان می‌باشند، غالبا کوچک بوده و میان جانوران موجود نقش کوچکی دارند. در دوره مزوزوئیک که به دوره خزندگان مشهور است (تریاسیک تا کرتاسه بالایی) خزندگان مهره‌داران مسلط بوده و بخش بیشتر محلهای زیست را اشغال کرده بودند. بطوری که در نیمه صحراها و سرزمینهای مرتفع خشک در باتلاقها و مردابها و اقیانوسها انتشار داشتند. این جانوران کوچک و بزرگ بوده و درازا و وزن بعضی از آنها از فیل خیلی تجاوز می‌کرده است و از لحاظ ساختمان و عادات نیز تفاوتهای بزرگی میان آنها وجود داشته است.



img/daneshnameh_up/c/cd/Dainasor_g.jpg

تاریخچه

بسیاری از آنها در مقایسه با مهره‌داران کنونی شکل خاصی داشته‌اند در حالی که دیگران دارای ظاهر جالب و حرکات زیبایی بوده‌اند. ابتدایی‌ترین خزندگان آنقدر به دوزیستان اولیه شباهت داشتند که شناسایی این دو گروه از یکدیگر دشوار است. با این حال برای پیدا نمودن اصل و منشا خزندگان دلیل و شاهد باارزشی هستند. تعدادی آثار و بقایای سنگواره که قطعا خزنده می‌باشند در رسوبات پنسیلوانیا یافت شده است. خزندگان در زمان پرمین رو به ازدیاد نهادند و از لحاظ ساختمان راه زندگی شاخه‌های فراوانی پیدا کردند.

زمان تکامل خزندگان

خزندگان در انتهای آن دوره به مقیاس وسیعی جانشین دوزیستان شدند و در انتهای زمان تریاس قسمت بزرگ دسته‌های خزندگان پدیدار گشتند و در زمان ژوراسیک و کرتاسه گونه‌ها و تعداد خزندگان به اوج خود رسید و از لحاظ شکل و راه زندگی نیز گوناگونی بسیار بوجود آمد. سپس در آخر کرتاسه بیشتر ذخیره‌های خزندگان از میان رفتند. فقط 4 گروه آنها تا به امروز باقی ماندند و خزندگان بعدی اصل و منشا پستانداران را تشکیل دادند.

عامل سازگاری خزندگان اولیه

مهمترین پیشرفت تکامل خزندگان سازش و سازگاری آنها با زندگی خاکی و بیرون از آب بوده است. بوجود آمدن پوست خشک و شاخی که از بین رفتن آب بدن جلوگیری می‌کند و تولید تخمهایی که قادر به تکامل جنین در روی زمین هستند در این سازگاری نقش برجسته‌ای داشته است.

خصوصیات دایناسورها

خزندگان کوچک اولیه بدن و دم دراز و 4 اندام کوتاه و 5 انگشت داشتند. به جز شکل عمومی ویژگیهای کلی دیگر عبارتند از:
  • افزایش اندازه به نسبتهای بسیار بزرگ در برونتوزورها.

  • بوجود آمدن جوشن و سلاح دفاعی از جمله صفات پوستی و شاخها و یا خارهای سر در بعضی دینوزرها.

  • ساختمان سبک به منظور دویدن تند با 4 یا 2 پا در سایر دینوزرها.

  • سازش با پرواز بوسیله افزودن شدن درازای اندام پیشین و دم و تکامل پرده‌های پرشی پوست در پتروداکتیلها.

  • سازش شدید پوست با زندگی آبی به کمک پاهای بالشتک مانند و بدن دوکی شکل در ایکتیوزرها.



img/daneshnameh_up/c/cb/Dainasor.jpg

ویژگیهای

دایناسورهای مهم

درازای برانتوزروس و براکیوزروس به ترتیب 22.5 و 24 متر و دیپلودوکوس تا 27.5 متر بوده و اینها بزرگترین جانورانی هستند که تاکنون شناخته شده‌اند. وزن تخمینی آنها 25 تا 35 تن بوده و روزانه بیش از 250 کیلوگرم غذا می‌خوردند. استگوزروس یک رشته صفحات استخوانی بسیار بزرگی در درازای یک خط برجسته پشت داشته است که از گردن تا انتهای دم امتداد می‌یافت. در تری سراتوپس جمجمه‌ای وجود داشته که از لحاظ اندازه و وزن بجز والان کنونی در جانوران دیگر به ندرت دیده می‌شد.

بخشهای قابل ذکر جمجمه عبارت بودند از یک نوک (منقار) تیز و بران در آرواره بالا یک شاخ کوتاه و کلفت روی بینی و یک جفت شاخ دراز و نوک تیز و متوجه به پیش در قله سر. بسیاری از این خزندگان در روی 4 پا راه می‌رفتند و عده‌ای دیگر مانند کانگورو می‌توانستند روی پاهای پشتی به ایستند. جوشن یا زره و خارها و شاخهای دفاعی را منحصرا از ویژگیهای نمونه‌های گیاهخوار می‌دانند. مغز دینوزرهای بسیار بزرگ از نظر تناسب کوچک بوده مثلا مغز تری سراتوپس 10 تنی فقط 906 گرم وزن داشته است.

وزن مغز استگوزروس 18 پایی بیش از 70 گرم نبوده است. خزندگان پرنده پتروداکتیلها ساختمان سبک وزنی داشته اند. سر این جانور دراز و انگشت پنجم آنها بلند شده بوده است. اندامهای پسین و قاعده دم پرده پرواز را تقریبا شبیه به آنچه که در خفاشهای امروزی دیده می‌شود تقویت و حمایت می‌کرده است. در یکی از این اشکال پترانودون فاصله بین دو سر پرده پرواز 7.5 متر درازا داشته است. ایکتیوروزهای دریایی شبیه وال بوده و یک پرده دمی بزرگ و 4 اندام بالتشک مانند (به جای دو اندام) داشته‌اند که برای شنا بکار می‌رفتند.

خزندگان دوره مزوزوئیک از گونه‌های علفخوار و گوشتخوار تشکیل می‌شدند. لانه‌های تخم دینوزور که در مغولستان کشف شده است ثابت می‌کند که بعضی از این خزندگان قدیم مانند اخلافشان تخم‌گذار بوده اند. بقایای خزندگان سنگواره در همه قاره‌ها به خز نواحی مجاور قطب جنوب پیدا شده‌اند و در بعضی از صخره‌های ایالات غربی بویژه در ویومینگ ، یوتا و کولورادو فراوان می‌باشند. بسیاری از گونه‌ها را امروز اسکلتهای کامل و بیشمار آنها را از زمین بیرون آورده و پس از بررسی در موزه‌ها بر پا داشته‌اند به خوبی می‌شناسیم.

دلیل از بین رفتن دایناسورها

درباره اینکه خزندگان قدیم از دید زمین شناسی چگونه ناگهان ناپدید شدند گفته‌های فراوانی وجود دارد. بر طبق یک نظریه ابتدایی‌ترین پستانداران تخمهای خزندگان بزرگ را خورده‌اند و به موجب نظریه دیگر که پذیرفتنی‌تر است. تغییرات آب و هوا مانند کم شدن دما و رطوبت متغیر در خزندگان و مسکنشان تاثیر مخالف گذارده است. در نتیجه از بین رفتن خزندگان در اواخر دوره مزوزوئیک برای پستانداران موقعیت مناسبی بوجود آمده در آن موقع اندازه پستانداران کوچک بوده و در دوره سوم شروع به تکامل شگفت آوری نموده‌اند.
img/daneshnameh_up/8/87/Dainasor1.jpg

دایناسورهای

گوشتخوار

این دایناسورها بر روی دو پای عقبی خود حرکت می‌کردند. برخی نظیر تری نازا روس بدنی سنگین و پاهای قدرتمندی داشتند. آنها از چنگالها و دندانهای تیز برای کشتن دایناسورهای گیاه خوار استفاده می‌کردند. بعضی دایناسورها نظیر دینونی چوس کوچکتر ، سبکتر و سریعتر بودند. آنها دایناسورهای گیاه خوار ، پستانداران و حشرات را می‌خوردند. این شکارچیان چابک برای غلبه بر شکارخود به صورت گروهی شکار می‌کردند . دینونی چوس دارای پنجه‌ها و چنگالهای بهم پیچیده‌ای بود که طی شکار برای دریدن طعمه به سمت جلو به حرکت در می‌آمد.

دایناسورهای گیاهخوار

دایناسورهای گیاه خوار از جمله بزرگترین حیواناتی بودند که تا کنون بر روی زمین زندگی کرده اند و برای حفاظت از خود در مقابل حیوانات شکاری به جثه بزرگ خود و بدن مسلح خود متکی بودند. آنها بیشتر اوقات روز را به چریدن بر روی گیاهان می‌گذراندند. براکیوزاروس عظیم‌الجثه 25 متر طول و 76 تن وزن داشت . گردن بلندش او رادر رسیدن به رستنی‌هایی که برای دیگر دایناسورها بالا بودند یاری می‌کرد.

+ نوشته شده در یکشنبه 14 خرداد1391ساعت 5:19 PM توسط کارن |

img/daneshnameh_up/a/a0/saniatom.gif
  • ریشه لغوی

    این کلمه ، از کلمه یونانی atomos ، غیر قابل تقسیم ، که از a- ، بمعنی غیر و tomos، بمعنی برش ، ساخته شده است. معمولا به معنای اتم‌های شیمیایی یعنی اساسی‌ترین اجزاء مولکول‌ها و مواد ساده می‌باشد.

    تاریخچه شناسایی اتم

    مواد متنوعی که روزانه در آزمایش و تجربه با آن روبه رو هستیم، متشکل از اتم‌های گسسته است. وجود چنین ذراتی برای اولین بار توسط فیلسوفان یونانی مانند دموکریتوس (Democritus) ، لئوسیپوس (Leucippus) و اپیکورینز (Epicureanism) ولی بدون ارائه یک راه حل واقعی برای اثبات آن ، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانیکه در قرن 18 راجر بسکوویچ (Rudjer Boscovich) آنرا احیاء نمود و بعد از آن توسط جان دالتون (John Dalton) در شیمی بکار برده شد.


    راجر بوسویچ نظریه خود را بر مبنای مکانیک نیوتنی قرارداد و آنرا در سال 1758 تحت عنوان:

    Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium

    چاپ نمود.

    img/daneshnameh_up/0/07/Layehaye_electroni.jpg

    براساس نظریه بوسویچ ، اتمها نقاط بی‌اسکلتی هستند که بسته به فاصله آنها از یکدیگر ، نیروهای جذب کننده و دفع کننده بر یکدیگر وارد می‌کنند. جان دالتون از نظریه اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده ، استفاده نمود. در اثر تلاش آمندو آواگادرو (Amendo Avogadro) در قرن 19، دانشمندان توانستند تفاوت میان اتم‌ها و مولکول‌ها را درک نمایند. در عصر مدرن ، اتم‌ها ، بصورت تجربی مشاهده شدند.

    اندازه اتم

    اتم‌ها ، از طرق ساده ، قابل تفکیک نیستند، اما باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم ، معمولا میان 10pm تا 100pm متفاوت است.

    ذرات درونی اتم

    در آزمایش‌ها مشخص گردید که اتم‌ها نیز خود از ذرات کوچکتری ساخته شده‌اند. در مرکز یک هسته کوچک مرکزی مثبت متشکل از ذرات هسته‌ای ( پروتون‌ها و نوترون‌ها ) و بقیه اتم فقط از پوسته‌های متموج الکترون تشکیل شده است. معمولا اتم‌های با تعداد مساوی الکترون و پروتون ، از نظر الکتریکی خنثی هستند.

    طبقه‌بندی اتم‌ها

    اتم‌ها عموما برحسب عدد اتمی که متناسب با تعداد پروتون‌های آن اتم می‌باشد، طبقه‌بندی می‌شوند. برای مثال ، اتم های کربن اتم‌هایی هستند که دارای شش پروتون می‌باشند. تمام اتم‌های با عدد اتمی مشابه ، دارای خصوصیات فیزیکی متنوع یکسان بوده و واکنش شیمیایی یکسان از خود نشان می‌دهند. انواع گوناگون اتم‌ها در جدول تناوبی لیست شده‌اند.

    اتم‌های دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (بعلت تعداد متفاوت نوترون‌های آنها) ، ایزوتوپ نامیده می‌شوند.

    ساده‌ترین اتم

    ساده‌ترین اتم ، اتم هیدروژن است که عدد اتمی یک دارد و دارای یک پروتون و یک الکترون می‌باشد. این اتم در بررسی موضوعات علمی ، خصوصا در اوایل شکل‌گیری نظریه کوانتوم ، بسیار مورد علاقه بوده است.

    واکنش شیمیایی اتم‌ها

    واکنش شیمیایی اتم‌ها بطور عمده‌ای وابسته به اثرات متقابل میان الکترون‌های آن می‌باشد. خصوصا الکترون‌هایی که در خارجی‌ترین لایه اتمی قرار دارند، به نام الکترون‌های ظرفیتی ، بیشترین اثر را در واکنش‌های شیمیایی نشان می‌دهند. الکترون‌های مرکزی (یعنی آنهایی که در لایه خارجی نیستند) نیز موثر می‌باشند، ولی بعلت وجود بار مثبت هسته اتمی ، نقش ثانوی دارند.

    img/daneshnameh_up/2/2b/atom3.gif

    پیوند میان اتم‌ها

    اتم‌ها تمایل زیادی به تکمیل لایه الکترونی خارجی خود و (یا تخلیه کامل آن) دارند. لایه خارجی هیدروژن و هلیم جای دو الکترون و در همه اتمهای دیگر طرفیت هشت الکترون را دارند. این عمل با استفاده مشترک از الکترونهای اتم‌های مجاور و یا با جدا کردن کامل الکترون‌ها از اتمهای دیگر فراهم می‌شود. هنگامیکه الکترونها در مشارکت اتمها قرار می گیرند، یک پیوند کووالانسی میان دو اتم تشکیل می‌گردد. پیوندهای کووالانسی قویترین نوع پیوندهای اتمی می‌باشند.

    یون

    هنگامیکه بوسیله اتم ، یک یا چند الکترون از یک اتم دیگر جدا می‌گردد، یون‌ها ایجاد می‌شوند. یون‌ها اتم‌هایی هستند که بعلت عدم تساوی تعداد پروتو ن‌ها و الکترون‌ها ، دارای بار الکتریکی ویژه می‌شوند. یون‌هایی که الکترون‌ها را برمی‌دارند، آنیون (anion) نامیده شده و بار منفی دارند. اتمی که الکترون‌ها را از دست می‌دهد کاتیون (cation) نامیده شده و بار مثبت دارد.

    پیوند یونی

    کاتیون‌ها و آنیون‌ها بعلت نیروی کولمبیک (coulombic) میان بارهای مثبت و منفی ، یکدیگر را جذب می‌نمایند. این جذب پیوند یونی نامیده می‌شود و از پیوند کووالانسی ضعیفتر است.

    مرز مابین انواع پیوندها

    همانطور که بیان گردید، پیوند کوالانسی در حالتی ایجاد میشود که در آن الکترون‌ها بطور یکسان میان اتمها به اشتراک گذارده می‌شوند، درحالیکه پیوند یونی در حالی ایجاد می‌گردد که الکترون‌ها کاملا در انحصار آنیون قرار می‌گیرند. بجز در موارد محدودی از حالتهای خیلی نادر ، هیچکدام از این توصیف‌ها کاملا دقیق نیست. در بیشتر موارد پیوندهای کووالانسی ، الکترون‌ها بطور نامساوی به اشتراک گذارده میشوند، بطوریکه زمان بیشتری را صرف گردش بدور اتم‌های با بار الکتریکی منفی‌تر می‌کنند که منجر به ایجاد پیوند کووالانسی با بعضی از خواص یونی می‌گردد.

    بطور مشابهی ، در پیوندهای یونی ، الکترون‌ها اغلب در مقاطع کوچکی از زمان بدور اتم با بار الکتریکی مثبت‌تر می‌چرخند که باعث ایجاد بعضی از خواص کووالانسی در پیوند یونی می‌گردد.

    مباحث مرتبط با عنوان

    + نوشته شده در شنبه 10 دی1390ساعت 4:0 PM توسط کارن |

    بسیار زیبا ((آب خوردن فضانوردان))

     برای دیدن فیلم روی ادامه ی مطلب کلیک کنبد.


    ادامه مطلب
    + نوشته شده در یکشنبه 8 آبان1390ساعت 6:0 PM توسط کارن |

    گروههای عمده باکتریها از نظر پزشکی

    باکتریها ارگانیسمهای تک‌سلولی هستند که اکثرا به صورت آزاد زندگی می‌کنند و دارای اطلاعات ژنتیکی و تولید انرژی و سیستمهای بیوسنتتیک لازم برای رشد و تولید مثل خود می‌باشند. باکتریها متنوع‌ترین میکروارگانیسمها هستند که شامل گروههای زیادی می‌باشند.

    دید کلی

    باکتریها مهمترین و متنوع‌ترین میکروارگانیسمها هستند و تعداد کمی در انسان جانوران و سایر موجودات بیماریزا بوده و بطور کلی بدون فعالیت آنها حیات بر روی زمین مختل می‌گردد. تنها تعداد کمی از باکتریها مانند کلامیدیاها و ریکتزیاها اجبارا انگل داخل سلولی هستند. باکتریها از جنبه‌هایی با یوکاریوتها تفاوت دارند. باکتریها ریبوزومهای 80S ، اندامکهای غشادار مانند هسته ، میتوکندری ، کروموزوم حلقوی بدون پوشش دارند. باکتریها (به غیر از میکوپلاسماها) دارای دیواره سلولی هستند.

    بطور یقین موجودات زنده یوکاریوتیک از موجودات زنده باکتری مانند بوجود آمده‌اند و نظر به اینکه باکتریها ساختمان ساده‌ای داشته و می‌توان به آسانی بسیاری از آنها را در شرایط آزمایشگاه کشت داد و تحت کنترل درآورد ، میکروب شناسان مطالعه وسیعی درباره فرآیندهای حیاتی آنها انجام داده‌اند. در این مبحث باکتریهای شایع با تاکید بر انواع بیماریزا در انسان معرفی می‌گردد.



    img/daneshnameh_up/6/69/b.12.jpg

    اسپیروکتها

    این باکتریها در آبهای آلوده ، فاضلابها ، خاک و مواد آلی در حال پوسیدن یافت می‌شوند. به شکل فنر پیچیده و متحرک هستند. اندازه آنها از چند میکرون تا 500 میکرون است. سه جنس از اسپیروکتها بیماریزا هستند:


    • تروپونما: شامل گونه تروپونما پالیزم است که این باکتری عامل مولد بیماری سیفلیس می‌باشد.

    • بورلیا: این باکتری عال مولد بیماری تب راجعه می‌باشد.

    • لپتوسپیرا: این باکتری از راه شکافها و زخمهای پوست وارد می‌شود و شایع‌ترین شکل بیماری ، عفونت کلیه است.

    کوکوسها و باسیلهای گرم منفی هوازی

    جالب‌ترین باکتریها در این گروه انواع متعلق به جنس سودوموناس است یکی از گونه‌های سودوموناس ، سودوموناس آئروجینوزا می‌باشد که این باکتری عفونتهای مجاری ادراری ، عفونتهای زخمی و سوختگیها ، آبسه و مننژیت را ایجاد می‌کند. باکتریهای این گروه قادر به ساختنآنزیمهای متعددی هستند و بدین نحو در تجزیه مواد شیمیایی نظیر حشره کشهایی که به خاک افزوده می‌شوند، کمک می‌کنند. مقاومت این گروه به آنتی بیوتیکها از نظر پزشکی حائز اهمیت است.

    باسیلهای گرم منفی بی‌هوازی اختیاری




    img/daneshnameh_up/d/da/b.4.jpg

    آنتروباکتریاسه

    این خانواده شامل گروهی از باکتریهای ساکن روده انسان و سایر جانوران است. جنسهای باکتریهای روده عباتند از: اشیرشیا ، شیگلا ، کلبسیلا ، آنتروباکتر و ... . اشیرشیاکلی یکی از ساکنین اصلی روده بوده و آشناترین میکروبی که پژوهشهای فراوانی بر روی آن صورت گرفته است. سالمونلا یکی از باکتریهای بیماریزا است که یکی از گونه‌های آن مولد بیماری تب تیفوئید می‌باشد. گونه‌های شیگلا عامل اسهال خونی است. کلبسیلا عامل عفونت مجاری تنفسی ذات‌الریه است. سرشیا عامل عفونت ادراری و تنفسی است و آنتروباکتر در عفونتهای مجاری ادراری نقش بر‌عهده دارند.

    ویبریوناسه

    جنسهای مهم این خانواده شامل ویبریو و آئروموناس می‌باشد. گونه بیماریزا ویبریوکلرا است که عامل بیماری وبا می‌باشد. باکتریهای متعلق به آئروموناس عامل بیماری ذات‌الریه و اختلالات روده می‌باشند.

    هموفیلوس

    یکی از گونه‌های آن به نام هموفیلوس آنفلوآنزا عامل مننژیت در کودکان و جوانان می‌باشد.

    باکتریهای گرم منفی بی‌هوازی

    در این گروه دو جنس مهم از نظر پزشکی به نامهای نایسریا و موراگزلا وجود دارد. نایسریا از اهمیت ویژه‌ای برخوردار است و انگل غشاهای مخاطی در انسان بوده و درجه حرارت نزدیک درجه حرارت بدن انسان زندگی می‌کند، گونه‌های بیماریزا شامل باکتری مولد بیماری سوزاک و باکتری مولد مننژیت می‌باشد. باکتریهای جنس موراگزلا در التهاب بافت ملتحمه چشم دخالت دارند.

    کوکوسهای گرم منفی بی‌هوازی

    این باکتریها اختصاصا به صورت دوتایی ، گاهی تک‌تک ، خوشه‌ای یا زنجیری قرار می‌گیرند. و همگی بدون حرکت و بدون اسپور هستند. باکتریهای متعلق به جنس ویلونلا بخش از میکروفلور طبیعی دهان و پلاک دندانی هستند.

    کوکوسهای گرم مثبت

    این گروه از باکتریها از نظر پزشکی شامل دو جنس استافیلوکوکوس و استروپتوکوکوس هستند. عده‌ای از باکتریهای استافیلوکوکوس مواد سمی تولید می‌کنند که گویچه‌های قرمز خون و گویچه‌های سفید خون را نابود می‌کنند. چندین نوع عفونت استافیلوکوکی بوسیله گونه استافیلوکوکوس اورائوس ایجاد می‌شود که در ایجاد عفونتهای پوستی ، ذات‌الریه و آبسه‌های مغزی دخالت دارند. استرپتوکوکها در تب زایمان ، تب مخملک ، گلودرد ، تب روماتیسمی و پوسیدگی دندان دخالت دارند.



    img/daneshnameh_up/9/9c/b.9.jpg

    باسیلها و کوکوسهای اسپوردار

    دو جنس مهم اسپوردار باسیلوس و کلسترویدیوم می‌باشند. با‌سیلوس آنتراسیس عامل بیماری سیاه زخم که معمولا در گاو ، گوسفند و اسب بیماری تولید می‌کند، می‌تواند به انسان انتقال پیدا کند. باکتریهای متعلق به جنس کلستریدیوم بی‌هوازی اجباری هستند و بیماریهایی که تولید می‌کنند شامل کزاز و بوتولیسم می‌باشد.

    باکتریهای میله‌ای شکل گرم مثبت بدون اسپور

    مهمترین این گروه جنس لاکتو باسیلوس می‌باشد. لاکتوباسیلوسها در روده و حفره دهانی زندگی می‌کنند. در دهان این باکتریها نقشی در پوسیدگی دندان به عهده دارند. در صنعت از این باکتریها برای تولید کلم شور ، دوغ و ماست استفاده می‌شود. باکتری بیماریزای متعلق به این گروه "یستریا منوسایتوجنز" است که در تولید آبسه ، انسفالیت و آندوکاردیت ، دخالت دارد.

    اکتینومیستها

    از جنسهای مهم این گروه می‌توان کورینه باکتریوم ، مایکوباکتریوم ، نوکاردیا ، اکتینومیسس و استرپتومایسس را نام برد.


    • معروفترین و شناخته شده ترین گونه کورینه باکتریوم ، کورینه باکتریوم دیفتریا می‌باشد که عامل بیماری دیفتری می‌باشد.
    • دو گونه مهم مایکوباکتریوم توبرکلوزیسکه عامل سل و مایکوباکتریوم لپرا که عامل جذام می‌باشد.
    • گونه‌های متعلق به نوکاردیا در عفونتهای ریوی و عفونت مخرب دست و پا دخالت دارند.

    ریکتیساها

    این گروه شامل ریکتسیا و کلامیدیا می‌باشند. این دسته از باکتریها ، انگلهای درون سلولی اجباری هستند که فقط در درون سلول میزبان قادر به تولید مثل هستند و از این لحاظ به ویروسها شباهت دارند. یکی از بیماریهایی که عامل مولد آن ریکتسیا می‌باشد، تیفوس است که بوسیه شپش منتقل می‌شود ، گونه‌هایی از کلامیدیاها موجب کوری در انسان می‌شوند.



    img/daneshnameh_up/6/6d/b.7.jpg

    مایکوپلاسما

    مایکوپلاسما باکتریهای فاقد دیواره سلولی هستند. مهمترین گونه بیماریزا در انسان مایکوپلاسما نومونیا است که عامل ذات‌الریه ابتدایی آتیپیک می‌باشد. این بیماری در بخش فوقانی دستگاه تنفس و ندرتا مانند سایر ذات‌الریه‌ها ، عارض می‌شود.
    + نوشته شده در پنجشنبه 2 تیر1390ساعت 3:57 PM توسط کارن |

    باکتریها گروهی از موجودات تک یاخته‌ای ذره بینی هستند که پوشش بیرونی نسبتا ضخیمی آنها را احاطه کرده است. این موجودات ساختار ساده‌ای دارند و به گروه پروکاریوتها تعلق دارند.

    مقدمه

    در عمل باکتریهایی که دارای خواص یکسانی باشند بندرت یافت می‌شوند، حتی باکتریهایی که از یک سلول منشا می‌گیرند ممکن است از نظر یک یا چند صفت با یکدیگر متفاوت باشند. این تفاوتها نتیجه تغییراتی است که به علت جهش ژنی یا موتاسیون در سلولهای باکتریایی پدید می‌آید. این باکتریهای تغییر یافته ، موتانت Mutant نامیده می‌شوند که از نظر بعضی از خواص نظیر ساختمان آنتی ‌ژن ، حساسیت در مقابل آنتی بیوتیکها و ... با سایر باکتریهای مشابه اختلاف دارند.

    سهولت تغییرپذیری در باکتریها مربوط به سرعت تقسیم آنهاست. زمان تقسیم یا مدت زمانی که برای تولید یک سلول جدید در باکتریها لازم است، حدود 2 دقیقه و در مورد انسان 20 سال است. مثلا یک سلول باکتری در مدت 18 ساعت 54 نسل بوجود می‌آورد. درحالیکه برای ایجاد همین تعداد نسل انسان بیش از 1000 سال زمان لازم است. پس جهش ژنی در باکتریها نسبت به موجودات عالی خیلی سریع و قابل ملاحظه است.



    img/daneshnameh_up/d/da/b.4.jpg

    تفاوت یوکاریوتها با باکتریها

    در کره خاکی تنها دو نوع سلول توسط کلیه ارگانیسمهای زنده تولید می‌شود. سلولهای پروکاریوت (یا هسته ابتدایی). در این گروه هسته ، فاقد غشا است و شامل کلیه باکتریهاست. پروکاریوتها شامل یو‌باکتریها (باکتریهای حقیقی) و آرکئی باکترها (باکتریهای قدیمی) است. اما گروه دیگر یوکاریوتها هستند که دارای غشای هسته و هسته حقیقی می‌باشند. اینگونه هسته در تمام ارگانیسمهای دیگر مانند Algae (جلبکها) Fungi (قارچها) ، پروتوزوئرها (protozoa) و گیاهان (Plant) و جانوران (Animals) یافت می‌شود. پاتوژنهای انسانی تنها در میان یوباکتریها یافت می‌شوند.

    مشخصات سلول باکتری

    اکثر باکتریها پوشش سلولی (cell envelope) تولید می‌کنند که شامل غشای پلاسمایی ، دیواره سلولی (cell wall) و پروتئینها و پلی ساکاریدهای تشکیل دهنده آن می‌باشد. بعضی از باکتریها کپسول یا لایه چسبنده تولید می‌کنند. فیلامانهای خارجی (فلاژل و پیلی) ممکن است در باکتریها بوجود آید. دیواره سلولی ، ساختمان سخت و مقاومی است که پروتوپلاست را احاطه کرده و آن را از آسیب فیزیکی و شرایط کاهش فشار اسمزی محیط خارج حفاظت می‌کند. معمولا به باکتری اجازه می‌دهد تا در برابر سطح وسیعی از شرایط محیطی ایستادگی کند پروتوپلاست از غشای سیتوپلاسمی و محتویات آن تشکیل شده است.

    از نظر محتویات سلولی ، باکتریها سلولهای ساده‌ای هستند. ساختمان اصلی سیتوپلاسم آنها شامل شبکه فیبریلی کروماتین مرکزی یا نوکلئوتید (Nucleoid) می‌باشد که توسط سیتوپلاسم بی‌شکل حاوی ریبوزوم‌ها احاطه شده‌است. اجسام انکلوزیون سیتوپلاسمی یا گرانولهای ذخیره انرژی ، بسته به گونه‌های باکتری ماهیت شیمیایی متفاوتی دارند و مقدار آنها به مرحله رشد و محیط بستگی دارد. بعضی از ساختمانهای سلولی از قبیل آندوسپورها فقط به تعداد کمی از باکتریها محدود می‌شوند.



    img/daneshnameh_up/d/d8/b.3.jpg

    طبقه بندی باکتریها

    باکتریهای پست

    این باکتریها تک یاخته‌ای بوده و اگر کروی یا بیضوی باشند، کوکوس و اگر میله‌ای شکل یا دراز باشند، باسیل و اگر خمیده باشند ویبریون و چنانچه مارپیچی شکل و غیرقابل انعطاف باشند، اسپریل و اگر فنری و قابل انعطاف باشند، اسپیروکت نامیده می‌شوند.

    باکتریهای عالی یا رشته‌ای

    این باکتریها رشته مانند و اغلب غلاف‌دار هستند و اغلب اوقات شاخه‌های حقیقی ایجاد کرده ، میسلیوم تشکیل می‌دهند و چون تشکیلات منشعب ایجاد می‌کنند، لذا اکتینومیست نامیده می‌شوند. بنابراین باکتریها از نظر شکل به 6 گروه گرد ، دراز ، خمیده ، مارپیچی ، فنری و منشعب تقسیم می‌شوند.

    اجزای ساختمانی باکتریها

    فلاژلها (Flagella)

    فلاژلها ، فیلامانهای پروتئینی به طول و قطر یکنواخت می‌باشند و موجب تحرک شبیه به شنای سریع و مستقل اغلب باکتریها پاتوژنیک می‌گردند فلاژل در سه قسمت فیلامان ، قلاب و جسم پایه تشکیل شده است. پایه فلاژل در غشای پلاسمایی قرار گرفته است. لنگرگاه و تعداد فلاژل در باکتریها فرق خواهد کرد.

    فیمبریاها

    فیمبریاها که پیلی هم نامیده می‌شوند، فیبریلهای شبیه مو هستند به اندازه 0.004 تا 0.008 میکرون هستند. این ارگانل با میکروسکوپ الکترونی در سطح باکتریهای مختلف قابل رویت هستند. آنها مستقیم‌تر ، نازکتر و کوتاهتر از فلاژلها هستند. این رشته‌ها در غشای پلاسمایی سلول میکروبی لنگر می‌اندازد.

    هسته باکتری

    هسته سلول را میتوان بعد از رنگ آمیزی اختصاصی با میکروسکوپ نوری مشاهده کرد. در مقایسه با سلولهای عالی مواد ژنتیکی باکتریها و سایر سلولهای پست پراکنده ، ساده و بدون پوشش و کروموزوم حلقوی است غشای هسته وجود ندارد و کروموزوم به مزوزوم فرورفته در غشای سیتوپلاسمی چسبیده است. در سالهای اخیر پروتئینهای شبیه هیستون در باکتریها کشف شده است که احتمالا نقش مشابه هیستونها را در کروماتینهای سلولهای یوکاریوت ایفا می‌کنند.

    سیتوپلاسم

    بیش از 50 درصد پروتئین سلول در سیتوپلاسم قرار دارد و آنزیمهای متابولیسمی راههای گلیکولیز و بسیاری از آنزیمهای چرخه کربس ، انواع کاتالازها ، دهیدروژنازها ، و مواد حد واسط چرخه های متابولیکی در سیتوپلاسم وجود دارد. روابط اتمی ، یونی و الکترونی بین ترکیبهای مختلف سیتوپلاسمی با نظم خاص فعالیتهای حیاتی را ظاهر می‌سازد.

    پوشش سلول (Cellenvelope)

    کپسول و لعاب (Capsoles)

    قدرت بیماری‌زایی پاتوژنها اغلب با تولید کپسول همراه است. باکتریهای کپسول‌دار در محیط جامد ، کلنیهای مخاطی (Mucoid) یا صاف (Smooth) می‌سازند. در مقابل باکتریهای فاقد کپسول کلنیهای خشن (Rough) دارند. اگر باکتری قدرت کپسول‌سازی خودش را از دست بدهد در مقابل قدرت ویرولانس (بیماریزایی) خود را از دست داده و در مقابل دستگاه ایمنی بدن میزبان تاب مقاومت نخواهد داشت.

    دیواره سلولی

    دیواره سلولی باکتریها بی‌نهایت پیچیده است و لایه سفت و سختی را در اطراف باکتریها ایجاد می‌کند که سلول را از گسیختگی و متلاشی شدن در مقابل فشار اسمزی خارج سلول محافظت می‌کند. همچنین دیواره محل تجمع عوامل آنتی‌ ژن می‌باشد که باکتریها را توسط این آنتی ‌ژنها از هم تمیز می‌دهند. باکتریها با روش رنگ‌آمیزی گرم (Gram stain) به دو دسته تقسیم می‌شوند.

    گرچه هر دو گروه یعنی باکتریهای گرم مثبت و منفی دارای دیواره می‌باشند ولی فرق بین این دو گروه مربوط به خواصی است که در ساختمان دیواره سلولی آنها وجود دارد. اساس ساختمان در دیواره سلولی باکتریهای گرم مثبت یک لایه ضخیمی است از پپتیدوگلیکان (Poptidoglycan) ، ولی در باکتریهای گرم منفی ضخامت آن به حداقل می‌رسد.



    img/daneshnameh_up/e/e5/L.4.jpg

    غشای سیتوپلاسمی

    غشای سیتوپلاسمی غشای داخلی نیز نامیده می‌شود. غشای سیتوپلاسمی باکتریها مشخص بوده و از فسفو لیپید و پروتئین ساخته شده است. این غشا در پروکاریوتها از غشای سیتوپلاسمی در یوکاریوتها به علت نداشتن استرول متمایز می‌شود. چین‌خوردگیهای غشای سیتوپلاسمی به درون سلول ساختارهای ویژه‌ای به نام مزوزوم ایجاد می‌کند که کروموزومهای باکتریها به مزوزومها متصل هستند. غشا همچنین به عنوان یک سد اسمزی برای سلول عمل می‌کند و دارای سیتوپلاسم انتقال دهنده برای مواد محلول است و انتقال تولیدات سلولی را در مقابل با محیط خارج سلولی تنظیم می‌کنند.



    img/daneshnameh_up/2/27/b.5.jpg

    تولیدمثل باکتری

    باکتریها به روشهای تقسیم مستقیم ، آمیختگی ، قطعه قطعه شدن یا بوسیله کنیدی و همچنین جوانه زدن تکثیر می‌یابند. برخی باکتریها توانایی ایجاد هاگ درونی را دارند. هاگ سبب مقاومت باکتری در برابر عوامل نامساعد محیط می‌شود. هر باکتری فقط یک هاگ می‌سازد و از هر هاگ یک باکتری بوجود می‌آید.
    + نوشته شده در پنجشنبه 2 تیر1390ساعت 3:56 PM توسط کارن |

    فرض کنید که یک موشک برای خلاص شدن از جاذبی زمین چه نیروی زیادی لازم دارد، حلا خورشید چه طور که با جاذبی اش تمام سیارات منظومه ی شمسی را دور خودش میچرخاند اگر یک ستاره ای که صد برابر از خورشید بزرگ تر وهزار برابر درخشنده تر بخواهد در زمان مرگ خود منفجر شود به دلیل نیروی جاذبی فوق العاده ی خود اجزا آن به جای آن که به فضا پرتاب شوند به درون هسته ی آن حمله ور شده، تا زمانی که اندازه ی آن به یک چیز میکروسکپی تبدیل شود وحال نیروی گرانش آن صد ها برابر بیشتر از قبل شده و هر چیزی را می بلعد حتی نور را.


    راه های تشخیص سیاه چاله ها

    1-وقتی آن ها در حال بلعیدن چیزی هستند میشود آن ها را دید.

    2-گفتیم که آن ها نور را هم میبلعند و اگر به آن ها نور تابانده شود، نور را منحرف کرده و خود را لو می دهد.

    + نوشته شده در دوشنبه 23 خرداد1390ساعت 3:59 PM توسط کارن |

    بيگ بنگ - انفجار بزرگ

    همانطور كه گفتم پيدايش كائنات براى انسان يك نادانسته بود و بشر مى خواست بداند كه اين پيدايش از كجا شروع شد.آيا به صورت يكنواخت بوده و همين گونه نيز ادامه دارد يا نه؟ چنان كه برخى اعتقاد داشته اند كه كائنات همين ساختار را داشته و بدون تغيير باقى مى ماند. خب نتيجه اينكه نظريه هاى مختلفى در اين رابطه وجود داشت و نظريه پردازيهاى زيادى مى شد. يكى از اين نظريه ها كه حدود سى و هفت يا سى و هشت سال قبل ارائه شد بيگ بنگ ياهمان انفجار بزرگ نام داشت كه توانست به خيلى از ابهامات پاسخ بدهد. اين نظريه، آغاز كائنات را از يك هسته اتم در فضا و زمان صفر مى داند زيرا آن هنگام هنوز فضا وزمان آغاز نشده بود. تصور بكنيد كه تمام كائنات در يك هسته اتم ياحتى كوچكتر از آن جاى داشت و در يك لحظه اين فضا و زمان آغاز مى شود يعنى اينكه يك انفجار بزرگ كه حاصل گرانش شديد ناشى از فشردگى بوده، شروع شد.

    اين واقعه بين سيزده تا پانزده ميليارد سال پيش رخ داده است، درحقيقت اين حادثه از آن نقطه صفر شروع مى شود. قابل ذكر است كه باوجودچنين فشردگى اى طبيعتاً دماى بسيار زيادى در لحظه كمى قبل از انفجار بزرگ حاكم بوده است. هنگامى كه فضا وزمان شروع به بزرگ و باز شدن كرد، دما مدام رو به كاهش بوده به طورى كه تخمين زده مى شود وقتى فقط يك ثانيه ازتشكيل كائنات مى گذشته است ده ميليارد كلوين نزول دما داشته ايم.

    انبساط جهان به قدرى شديد رخ داده است كه از اندازه كوچكتر از يك هسته اتم در يك لحظه به اندازه كره زمين بزرگ مى شده، يعنى انبساط و تورم بعد از بيگ بنگ شروع شده بود اما هنوز كهكشانها به وجودنيامده بودند. نور آغاز كائنات بود سپس بعداز نور، ماده ايجاد شد و شايد بعد از دو ميليارد سال از انفجار بزرگ كهكشانها شكل گرفتند و خورشيد ما يكى از ذرات كوچك آنهاست.

    كهكشانها چگونه و چه زمانى شكل گرفتند؟

    كهكشانى كه ما در آن هستيم (كهكشان راه شيرى) حدود ده ميليارد سال پيش به وجود آمده است البته اگر قبول كنيم كه بيك بنگ سيزده ميلياردسال پيش رخ داده است.

    اما كهكشانها انواع مختلفى دارند كه عبارت است از: نامنظم، بيضوى و مارپيچى. ازمواد اطراف كهكشانها كه باقى مانده بودند بازوهاى كهكشانى شكل گرفتند اما چون فشردگى مواد را در آن قسمت فضا داشتيم ونيز كهكشانهاى شكل گرفته بسيار نزديك به هم بودند طبيعتاً برخوردها هم زياد بوده است يعنى دوكهكشان با هم ادغام شده و يك كهكشان بزرگتر تشكيل مى دادند يا سبب ساز بازوهاى كهكشانى بزرگتر مى شدند. اين اثرات در بحث انتقال به سمت قرمز يا رد شيفت مى گنجند.

    اين انفجار چقدر طول كشيد؟

    براى لحظه انفجار بزرگ عدد ده به توان منفى چهل و سه را در نظر مى گيرند و بعد از آن لحظه، حادثه شروع مى شود كه حتى هنوز به هزارم ثانيه نرسيده، تغييرات در حال رخ دادن بوده است.

    عالم در ابتدا چگونه به نظر مي آمد؟

    آشكار است براي آگاهي از چگونگي اولين ثانيه ها و يا بهتر بگوييم اولين اجزاي ثانيه هاي پس از انفجار اوليه نبايد از ستاره شناسان پرسيد بلكه در اين مورد بايد به فيزيكدان هاي متخصص در امر فيزيك ذره اي مراجعه كرد كه در مورد تشعشعات و ماده در شرايط كاملا سخت و غير عادي تحقيق مي كنند و تجربه مي كنند. تاريخ كيهان معمولا به 8 مقطع كاملا متفاوت و غير مساوي تقسيم مي شود :

    مرحله اول - صفر تا 43- 10 ثانيه


    اين مساله هنوز برايمان كاملا روشن نيست كه در اين اولين اجزاي ثانيه ها چه چيزي تبديل به گلوله آتشيني شد كه كيهان بايد بعدا از آن ايجاد گردد . هيچ معادله و يا فرمول هاي اندازه گيري براي درجه حرارت بسيار بالا و غير قابل تصوري كه در اين زمان حاكم بود در دست نمي باشد.

    مرحله دوم- 43- 10 تا 32- 10 ثانيه

    اولين سنگ بناهاي ماده مثلا كوارك ها و الكترون ها و پاد ذره هاي آنها از برخورد پرتوها با يكديگر به وجود مي آيند. قسمتي از اين سنگ بناها دوباره با يكديگر برخورد مي كنند و به صورت تشعشع فرو مي پاشند. در لحظه هاي بسيار بسيار اوليه ذرات فوق سنگين - نيز مي توانسته اند به وجود آمده باشند. اين ذرات داراي اين ويژگي هستند كه هنگام فروپاشي ماده بيشتري نسبت به ضد ماده و مثلا كوارك هاي بيشتري نسبت به آنتي كوارك ها ايجاد مي كنند. ذرات كه فقط در همان اولين اجزاي بسيار كوچك ثانيه ها وجود داشتند براي ما ميراث مهمي به جا گذاردند كه عبارت بود از : افزوني ماده در برابر ضد ماده

    مرحله سوم- از 32- 10 ثانيه تا 6- 10 ثانيه

    كيهان از مخلوطي از كوارك ها - لپتون ها - فوتون ها و ساير ذرات ديگر تشكيل شده كه متقابلا به ايجاد و انهدام يكديگر مشغول بوده و ضمنا خيلي سريع در حال از دست دادن حرارت هستند

    مرحله چهارم- از 6- 10 ثانيه تا 3- 10ثانيه

    تقريبا تمام كوارك ها و ضد كوارك ها به صورت پرتو ذره ها به انرژي تبديل مي شوند. كوارك هاي جديد ديگر نمي توانند در درجه حرارت هاي رو به كاهش به وجود آيند ولي از آن جايي كه كوارك هاي بيشتري نسبت به ضد كوارك ها وجود دارند برخي از كوارك ها براي خود جفتي پيدا نكرده و به صورت اضافه باقي مي مانند. هر 3 كوارك با يكديگر يك پروتون با يك نوترون مي سازند. سنگ بناهاي هسته اتم هاي آينده اكنون ايجاد شده اند.

    مرحله پنجم - از 3- 10 ثانيه تا 100 ثانيه

    الكترون ها و ضد الكترون ها در برخورد با يكديگر به اشعه تبديل مي شوند. تعدادي الكترون باقي مي ماند زيرا كه ماده بيشتري نسبت به ضد ماده وجود دارد. اين الكترون ها بعدا مدارهاي اتمي را مي سازند

    مرحله ششم - از 100 ثانيه تا 30 دقيقه

    در درجه حرارت هايي كه امروزه مي توان در مركز ستارگان يافت اولين هسته هاي اتم هاي سبك و به ويژه هسته هاي بسيار پايدار هليم در اثر همجوشي هسته اي ساخته مي شوند. هسته اتم هاي سنگين از قبيل اتم آهن يا كربن در اين مرحله هنوز ايجاد نمي شوند. در آغاز خلقت عملا فقط دو عنصر بنيادي كه از همه سبكتر بودند وجود داشتند : هليم و هيدروژن

    مرحله هفتم - از 30 دقيقه تا 1 ميليون سال پس از خلقت

    پس از گذشت حدود 300000 سال گوي آتشين آنقدر حرارت از دست داده كه هسته اتم ها و الكترون ها مي توانند در درجه حرارتي در حدود 3000 درجه سانتي گراد به يكديگر بپيوندند و بدون اينكه دوباره فورا از هم بپاشند اتم ها را تشكيل دهند . در نتيجه آن مخلوط ذره اي كه قبلا نامرئي بود اكنون قابل ديدن مي شود.

    مرحله هشتم - از يك ميليون سال پس از خلقت تا امروز

    از ابرهاي هيدروژني دستگاههاي راه شيري ستارگان و سيارات به وجود مي ايند. در داخل ستارگان هسته اتم هاي سنگين از قبيل اكسيژن و آهن توليد مي شوند. كه بعد ها در انفجارات ستاره اي آزاد مي گردند و براي ساخت ستارگان و سيارات و حيات جديد به كار مي ايند.

    عناصر اصلي حيات زميني چه زماني پديدار شد؟

    براي زمين با توجه به گوناگوني حيات كه در آن وجود دارد 3 چيز از اهميت خاصي برخوردار بوده است:

    از همان ابتداي خلقت هميشه ماده بيشتري نسبت به ضد ماده وجود داشته و بنابراين همواره ماده براي ما باقي مي ماند.

    در مرحله ششم هيدروژن به وجود آمد اين ماده كه سبك ترين عنصر شيميايي مي باشد سنگ بناي اصلي كهكشانه ها و سيارات مي باشد. هيدروژن همچنين سنگ بناي اصلي موجودات زنده اي است كه بعدا روي زمين به وجود آمدند و احتمالا روي ميلياردها سياره ديگر نيز وجود دارند. در مركز ستارگان اوليه هسته اتم هاي سنگين از قبيل اكسيژن و يا كربن يعني سنگ بناهاي اصلي لازم و ضروري براي زندگي و حيات بوجود آمدند.

    آيا عالم همواره در حال انبساط خواهد بود؟

    جنبش انبساطي يا به عبارت ديگر از همديگر دور شدن كهكشانه ها به هر حال رو به كند شدن است. زيرا جزاير جهاني متعدد در واقع به سمت يكديگر جذب مي شوند و در نتيجه حركت انبساطي آن ها كند تر مي شود. اكنون پرسش فقط اين است كه آيا زماني تمام اين حركت ها متوقف خواهد گرديد و اين عالم در هم فرو خواهد پاشيد؟ اين مساله بستگي به تراكم ماده در جهان هستي دارد. هر چه اين تراكم بيشتر باشد نيرو هاي جاذبه بين كهكشانه ها و ساير اجزاي گيتي بيشتر بوده و به همان نسبت حركت آن ها با شدت بيشتري متوقف خواهد شد. در حال حاضر چنين به نظر مي رسد كه تراكم جرم بسيار كمتر از آن است كه زماني عالم در حال انبساط را به توقف در آورد. به هر حال اين امكان وجود دارد كه هنوز جرم هاي بسيار بزرگ ناشناخته اي از قبيل ( سياهچاله هاي اسرار آميز) يا ( ابرهاي گازي شكل تاريك) وجود داشته باشند و نوترينو ها كه بدون جرم محسوب مي شوند جرمي هرچند كوچك داشته باشند. اگر اين طور باشد در اين صورت حركت كيهاني زماني شايد 30 ميليارد سال ديگر متوقف خواهد شد. در آن زمان كهكشان ها با شتابي زياد حركت به سوي يكديگر را اغاز خواهند كرد تا در نهايت به شكل يك گوي آتشين عظيم با يكديگر متحد شوند. آن زمان شايد مي بايد روي يك انفجار اوليه جديد ديگر و تولد يك عالم جديد حساب كنيم. با توجه به سطح كنوني دانش بشر و ميزان پژوهش هاي انجام شده بايد اينطور فرض كرد كه عالم تا ابديت انبساط خواهد يافت.

    با توجه به بزرگى وعظمت كائنات، پيدايش حيات غيرزمينى چقدر احتمال دارد؟ با يك حساب سرانگشتى متوجه مى شويم كه باوجود اين تعداد ستاره احتمال حيات بسيار زياد است. حتى بعضى از ستاره ها داراى سياره نيستند و يا اين سياره بسيار دور از ستاره يا بسيار نزديك به آن هستند و برخى هم گازى مى باشند اگر تمام اين موارد را از كل ستاره ها كم كنيم تقريباً بيست وپنج درصد آنها امكان وجود حيات را دارند.

    آيا ميدانستيد …؟

    - فقط حدود 4درصد عالم از ماده ، به شكلي كه ما مي شناسيم تشكيل شده است ، يعني ماده معمولي كه ما مي شناسيم و در آزمايشگاه وجود دارد، فقط 4درصد كل عالم را مي سازد. 23درصد عالم را ماده تاريك سرد تشكيل داده كه دانشمندان اطلاعات خيلي كمي درباره اش دارند و 73درصد باقي مانده را انرژي تاريك عجيب تشكيل مي دهد كه تقريبا تنها چيزي كه در موردش مي دانيم ، اين است كه وجود دارد!

    + نوشته شده در چهارشنبه 4 خرداد1390ساعت 4:32 PM توسط کارن |

    پيدايش منظومه شمسي

    تاكنون نظريات زيادي در مورد منشا منظومه شمسي و زمين ارائه شده است، در ميان آنها ، دو نظر اساسي وجود دارد. اولي فرضيه برخورد نزديك نام گرفته است. بر اين پايه است كه سياره‌ها ، از مواد جدا شده از خورشيد ، تشكيل شده‌اند. بر طبق آن ، كشش گرانشي يك ستاره يا دنباله‌دار به حدي بوده است كه هنگام عبور از كنار خورشيد مقداري از ماده آن را بيرون كشيده است. زمين ما عضوي از خانواده خورشيد است.

    منظومه شمسي نه سياره اصلي تعداد زيادي قمر طبيعي (اقمار) ، تعداد زيادي سياركها ، تعداد نامعلومي ستاره‌هاي دنباله‌دار به همراه شهابها ، شهاب سنگها به دور خورشيد در حال گسترش هستند.

    محتويات منظومه شمسي

    تمامي اجرامي كه تحت نيروهاي گرانشي خورشيد در مدارها در گردشند، منظومه شمسي را تشكيل مي‌دهند. اين اجرام بر اساس جرمشان در سلسله مراتب مشخص قرار دارند، در راس آنها خورشيد واقع است، سپس سيارات ، اقمار و حلقه‌هاي آنها ، خرده‌هاي بين سياره‌اي (ستاره‌هاي دنباله‌دار ، سياركها ، شهابها) و در آخرين مرتبه گازها و گرد و غبار بين سياره‌اي قرار دارند.

    نظريه برخورد نزديك

    در اوايل قرن بيستم ميلادي دو اخترشناس امريكايي نظريه برخورد نزديك را ارائه دادند كه بنا به عقيده آنها ، ذراتي از ماده خورشيد ، در اثر برخورد نزديك يك ستاره ديگر بيرون ريخته است. بعدا اين ذرات به همديگر پيوسته و اجرام بزرگي را تشكيل مي‌دهند كه از اين اجرام بزرگ ، سياره‌ها بوجود آمده‌اند.

    فرضيه كانت - لاپلاس

    نظريه مهم ديگر در سال 1755 ميلادي (1134 شمسي) بوسيله فيلسوف آلماني ، امانوئل كانت ، مطرح شد. نظر كانت به عقيده قابل قبول امروزي شبيه است. بر طبق آن ، منظومه شمسي از يك ابر گاز و غبار در حال چرخش ، شكل گرفته است. نظر كانت بوسيله رياضيدان فرانسوي به نام پير دو لاپلاس بسط داده شد. فرضيه كانت - لاپلاس ، يك ابر بسيار بزرگ از گازهاي داغ را ترسيم مي‌كند كه به دور محور خود مي‌چرخد. كانت و لاپلاس ، اين ابر بزرگ را سحابي ناميده‌اند.

    سرد شدن گاز سحابي ، باعث انقباض آن مي‌شود. در اين ضمن ، با انقباض جرم اصلي ، حلقه‌هايي از گاز در اطراف آن باقي مي‌مانند. اين جرم اصلي همان خورشيد است. حلقه‌ها ، در اثر نيروي گريز از مركز (نيرويي است كه اجسام در حال چرخش را به طرف بيرون از مركز چرخش مي‌راند.) از مركز دور مي‌شوند. بنابراين فرضيه ، حلقه‌هاي جدا از هم ، منقبض شده و سياره‌ها را بوجود آورده‌اند. دانشمندان در درستي اين نظر ترديد دارند، چرا كه گازهاي داغ گرايشي به انقباض ندارند، بلكه در فضا گسترش مي‌يابند.

    نظريه جديد ابرغبار

    فيزيكدان آلماني كارل فون وايتسزيكر بنياد اصلي تئوري جديد ابر غبار را پيشنهاد كرد. بعد از آن اخترشناس امريكايي به نام جرارد كويپر نظر وايتسزيكر را به‌صورت تئوري جديد منشا منظومه شمسي تكميل كرد. سيارات منظومه شمسي ، از همان گاز و غباري شكل گرفته‌اند كه خورشيد از آن پديد آمده است. ابر بزرگ با گردش خود در فضا به بخشهاي كوچكتري تقسيم شده است.

    ذرات موجود در اين بخشها ، همديگر را جذب كرده‌اند و سرانجام سياره‌ها را بوجود آورده‌اند. بيشتر مواد ابر اصلي در اثر تابش خورشيد از آن دور شده‌اند، ولي پيش از آنكه خورشيد ، حالت ستاره به خود گيرد، اندازه سياره‌ها به حدي رسيده بود كه مي‌توانستند در مداري به دور آن باقي بمانند يا گردش كنند.

    شكل گيري منظومه شمسي

    شكل گيري منظومه شمسي از ديد ديناميك

    منظومه شمسي يك ساختار منظم را برحسب خواص فيزيكي‌اش نشان مي‌دهد، بطوري كه اگر از بالاي قطب شمال خورشيد ديده شود، منظومه شمسي قواعد زير را پيدا مي‌كند:

    1. سيارات در خلاف جهت عقربه‌هاي ساعت در اطراف خورشيد مي‌گردند، خورشيد نيز در همان جهت به دور خود مي‌چرخد.

    2. به استثناي عطارد و پلوتو ، اكثر سيارات داراي صفحات مداري هستند كه فقط بطور جزئي با صفحه دايرة‌البروج شيب دارند، مدارها تقريبا هم صفحه هستند.

    3. به استثناي عطارد و پلوتو ، سيارات در مدارهايي مي‌گردند كه خيلي به دايره نزديك هستند.

    4. به استثناي زهره و اورانوس ، سيارات در خلاف جهت عقربه‌هاي ساعت (يعني در همان جهت حركت مداريشان) به دور خود مي‌چرخند.

    5. اكثر قمرها در همان جهتي كه سيارات مادرشان به دور خود مي‌چرخند و در نزديكي صفحات استوايي سيارات قرار دارند.

    6. ستاره‌هاي دنباله‌دار با دوره تناوب طولاني ، مدارهايي دارند كه از همه جهات و زوايا مي‌آيند، بر خلاف مدارهاي هم صفحه سيارات ، اقمار ، سياركها و ستاره‌هاي دنباله‌دار با دوره تناوب كوتاه.

    7. سه عدد از سيارات مشتري‌گون شناخته شده‌اند كه داراي حلقه هستند.

    شكل گيري منظومه شمسي از ديد شيمي

    تشكيل يك سياره مستلزم يك فرآيند چند مرحله‌اي است، اولا دانه‌هاي جامد متعلق به سحابي خورشيد متراكم مي‌شوند. ثانيا اين ذرات باهم يكي شده و اجرام آسماني بزرگ به نام ريز سيارات را شكل مي‌دهند كه سپس تصادم كرده و براي تشكيل پيش سيارات با هم يكي مي‌شوند و به سيارات امروزي متحول مي‌گردند. تركيبات شيميايي سيارات بوسيله فرآيندي به نام تسلسل تراكم از روي تراكم دانه‌ها تعيين مي‌شوند. ايده اوليه تسلسل تراكم اين است:

    مركز سحابي بايد در دمايي برابر چندين هزار درجه كلوين بوده باشد. در اينجا دانه‌هاي جامد ، حتي تركيبات آهن و سيليكاتها نمي‌توانستند متراكم شوند. در جاي ديگر كه مواد مي‌توانستند به عنوان دانه‌هاي جديد متراكم شوند، به‌صورت زير به دما بستگي داشت:

    پايينتر از 2000 كلوين ، دانه‌هاي ساخته شده از مواد خاكي متراكم شدند، زير 273 كلوين دانه‌هاي مواد خاكي و يخي هر دو مي‌توانستند شكل بگيرند. در دماي متفاوت گازهاي موجود و جامدات حاضر بطور شيميايي برهمكنش كرده و تركيبات متنوعي را توليد مي‌كنند. اگر دماي سحابي به سرعت از مركز به طرف بيرون كاهش يابد، چگاليها و تركيبات سيارات مي‌توانند با تسلسل تراكم توضيح داده شوند.

    + نوشته شده در سه شنبه 3 خرداد1390ساعت 12:30 PM توسط کارن |

    img/daneshnameh_up/c/c3/Solarsystemscale.jpg

    مقدمه

    شکل گیری منظومه شمسی حدود 5 میلیارد سال پیش ، از ابری متشکل از گاز و غبار بین ستاره‌ای ، آغاز گردید. جاذبه باعث انقباض ابر شده و کره متراکمی از گاز در مرکز ابر بوجود آورد. جاذبه همچنین باعث دوران هر چه سریعتر ابر شد. هنگام دوران، مواد موجود در ابر، پهن شده و حلقه ای به وجود آمد که نواحی متراکم مرکزی را در بر می گرفت. سرانجام در این ناحیه متراکم ، گرمای لازم برای وقوع واکنشهای هسته‌ای فراهم گشت و بدین ترتیب ، ستاره خورشید بوجود آمد. اعضای کوچکتر منظومه شمسی از مواد موجود در این حلقه بوجود آمدند. این اعضاء عبارتند از سیارات ، سیارکها و ستاره دنباله دار.



    img/daneshnameh_up/2/2b/Solarsystem.jpg
    img/daneshnameh_up/2/22/Manzoomeshamsi.jpg
    میلیونها سال طول کشید تا منظومه
    شمسی از ابری متشکل ازگاز و غبار ، پدید آمد.

    خانواده منظومه شمسی

    تمام اجرام آسمانی که در یک منظومه مداری قرار دارند، تحت تأثیر جاذبه‌ای دو جانبه به دور یک جرم مشترک مرکزی می‌چرخند. در منظومه زمین _ ماه مرکز جرم مشترک در فاصله 4748 کیلومتری (2950مایلی) هسته زمین قرار داشته و از سطح زمین خارج نشده است. در مورد منظومه شمسی ، مرکز جرم مشترک همواره با تغییر موقعیت نسبی سیاره‌ها ، در حال تغییر است. این مرکز در فاصله‌ای حدود 300000 کیلومتر (186000 مایل) خارج از سطح خورشید قرار دارد.

    سیارات منظومه شمسی

    تمام خصوصیات زیر در مقایسه با زمین می‌باشد

    سیاره قطر
    استوا
    جرم شعاع
    مدار
    سال روز
    عطارد 0.382 0.06 0.38 0.241 58.6
    زهره 0.949 0.82 0.72 0.615 -243
    زمین 1.00 1.00 1.00 1.00 1.00
    مریخ 0.53 0.11 1.52 1.88 1.03
    مشتری 11.2 318 5.20 11.86 0.414
    زحل 9.41 95 9.54 29.46 0.426
    سیاره اورانوس 3.98 14.6 19.22 84.01 0.718
    نپتون 3.81 17.2 30.06 164.79 0.671
    پلوتون* 0.24 0.0017 39.5 248.5 6.5
    سدنا* - - - - -







    img/daneshnameh_up/7/7c/Portraitdefamille.jpg
    اندازه سیارات نسبت به خورشید و همینطور
    محل قرار گرفتن قمرهای سیارات منظومه شمسی
    + نوشته شده در سه شنبه 3 خرداد1390ساعت 12:27 PM توسط کارن |

    مطالب قدیمی‌تر